If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-56x=0
a = 1; b = -56; c = 0;
Δ = b2-4ac
Δ = -562-4·1·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-56}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+56}{2*1}=\frac{112}{2} =56 $
| -4(y-9)=-12 | | 3(s-1)-10=-34 | | 75=5*v | | -9(a-8)=-27 | | 3(x+1.5)=9 | | 4=8d-7d | | 10+v/5=2 | | 55=-3v-8v | | 10=-4t+3t | | (8q+1)+(57)=90 | | -p/2-9=-14 | | 2v-4.6=8.2 | | (5z+1)+(59)=90 | | w-4.8=8.62 | | -p/2-9=14 | | 2x^2+3x-9=26 | | 18=-9v+6v | | y=3/7-8 | | 6=-8+2y | | 2=-p/2 | | X=110+5x | | 19+2d=35 | | 24=3u+6 | | -a+2/3=2 | | (2q-3)+(5q+2)=90 | | -j+0.8=-0.9j+0.76 | | -3=c/3 | | 5=-7+u/3 | | 5x+2+6x+4+x=12x-4=180 | | (2q-3)=(5q+2)=90 | | 223-u=115 | | 3(3w)=120 |